Effective Deep Memory Networks for Distant Supervised Relation Extraction
نویسندگان
چکیده
Distant supervised relation extraction (RE) has been an effective way of finding novel relational facts from text without labeled training data. Typically it can be formalized as a multi-instance multilabel problem. In this paper, we introduce a novel neural approach for distant supervised RE with special focus on attention mechanisms. Unlike the feature-based logistic regression model and compositional neural models such as CNN, our approach includes two major attention-based memory components, which are capable of explicitly capturing the importance of each context word for modeling the representation of the entity pair, as well as the intrinsic dependencies between relations. Such importance degree and dependency relationship are calculated with multiple computational layers, each of which is a neural attention model over an external memory. Experiment on real-world datasets shows that our approach performs significantly and consistently better than various baselines.
منابع مشابه
Global Relation Embedding for Relation Extraction
Recent studies have shown that embedding textual relations using deep neural networks greatly helps relation extraction. However, many existing studies rely on supervised learning; their performance is dramatically limited by the availability of training data. In this work, we generalize textual relation embedding to the distant supervision setting, where much largerscale but noisy training dat...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملDeep Residual Learning for Weakly-Supervised Relation Extraction
Deep residual learning (ResNet) (He et al., 2016) is a new method for training very deep neural networks using identity mapping for shortcut connections. ResNet has won the ImageNet ILSVRC 2015 classification task, and achieved state-of-theart performances in many computer vision tasks. However, the effect of residual learning on noisy natural language processing tasks is still not well underst...
متن کاملCross-Sentence N-ary Relation Extraction with Graph LSTMs
Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper, we explore a general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cr...
متن کاملDistant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks
Two problems arise when using distant supervision for relation extraction. First, in this method, an already existing knowledge base is heuristically aligned to texts, and the alignment results are treated as labeled data. However, the heuristic alignment can fail, resulting in wrong label problem. In addition, in previous approaches, statistical models have typically been applied to ad hoc fea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017